PriorityQueue 优先队列
PriorityQueue 优先队列
PriorityQueue 是 Java 中的一个基于优先级堆的优先队列实现,它能够在 O(log n) 的时间复杂度内实现元素的插入和删除操作,并且能够自动维护队列中元素的优先级顺序。
通俗来说,PriorityQueue 就是一个队列,但是它不是先进先出的,而是按照元素优先级进行排序的。当你往 PriorityQueue 中插入一个元素时,它会自动根据元素的优先级将其插入到合适的位置。当你从 PriorityQueue 中删除一个元素时,它会自动将优先级最高的元素出队。
- 堆排序 介绍
常用函数
offer()
: 插入一个元素add(E e)
: 和offer(E e)
的语义相同,都是向优先队列中插入元素,只是Queue
接口规定二者对插入失败时的处理不同,前者在插入失败时抛出异常,后则则会返回false
。对于PriorityQueue这两个方法其实没什么差别。poll()
: 获取队头元素并出队element()
和peek()
的语义完全相同,都是获取但不删除队首元素,也就是队列中权值最小的那个元素,二者唯一的区别是当方法失败时前者抛出异常,后者返回null
。根据小顶堆的性质,堆顶那个元素就是全局最小的那个;由于堆用数组表示,根据下标关系,0
下标处的那个元素既是堆顶元素。所以直接返回数组0
下标处的那个元素即可。
示例代码
默认为从小到大升序排列
// 创建 PriorityQueue 对象
PriorityQueue<String> priorityQueue = new PriorityQueue<>();
// 添加元素到 PriorityQueue
priorityQueue.offer("AAA");
priorityQueue.offer("BBB");
priorityQueue.offer("CCC");
// 打印 PriorityQueue 中的元素
while (!priorityQueue.isEmpty()) {
System.out.print(priorityQueue.poll() + " ");
}
//Results: AAA BBB CCC
自定义排列顺序
有两种方式来自定义排列顺序
- 向队列传入
Comparator
对象 - 自身元素实现
Comparable
接口 - 详细可以参考 Comparator 和 Comparable 接口
Comparator
提供的静态方法为降序排列
1. 使用PriorityQueue<String> priorityQueue = new PriorityQueue<>(Comparator.reverseOrder());
Comparator
规则
2. 自定义- 返回值如果小于0,说明前者要小于后者
- 如果相等,则二者相等
static Comparator<ListNode> cmp = new Comparator<>() {
public int compare(ListNode n1, ListNode n2) {
return n1.val - n2.val;//依旧是从小到大
}
};
Queue<ListNode> prique = new PriorityQueue<>(cmp);
Comparable
接口
3. 元素实现- 返回值如果小于0,说明本身要小于后者
- 如果相等,则二者相等
public class Person implements Comparable<Person>{
private int age;
public int getAge(){
return this.age;
}
@Override
public int compareTO(Person person){
return this.age - person.getAge();
}
}
元素插入图解源码
假设有如下的一个优先队列
比如我们要插入4,可以看到由于新元素小于其父节点,因此需要需要把元素上移两次。
//offer(E e)
public boolean offer(E e) {
if (e == null)//不允许放入null元素
throw new NullPointerException();
modCount++;
int i = size;
if (i >= queue.length)
grow(i + 1);//自动扩容
size = i + 1;
if (i == 0)//队列原来为空,这是插入的第一个元素
queue[0] = e;
else
siftUp(i, e);//调整
return true;
}
上述代码中,扩容函数grow()
类似于ArrayList
里的grow()
函数,就是再申请一个更大的数组,并将原数组的元素复制过去,这里不再赘述。需要注意的是siftUp(int k, E x)
方法,该方法用于插入元素x
并维持堆的特性。
//siftUp()
private void siftUp(int k, E x) {
while (k > 0) {
int parent = (k - 1) >>> 1;//parentNo = (nodeNo-1)/2
Object e = queue[parent];
if (comparator.compare(x, (E) e) >= 0)//调用比较器的比较方法
break;
queue[k] = e;
k = parent;
}
queue[k] = x;
}
调整的过程为:从k
指定的位置开始,将x
逐层与当前点的parent
进行比较并交换,直到满足x >= queue[parent]
为止。注意这里的比较可以是元素的自然顺序,也可以是依靠比较器的顺序。
元素删除图解源码
poll()
remove()
和poll()
方法的语义也完全相同,都是获取并删除队首元素,区别是当方法失败时前者抛出异常,后者返回null
。由于删除操作会改变队列的结构,为维护小顶堆的性质,需要进行必要的调整。
代码如下:
public E poll() {
if (size == 0)
return null;
int s = --size;
modCount++;
E result = (E) queue[0];//0下标处的那个元素就是最小的那个
E x = (E) queue[s];
queue[s] = null;
if (s != 0)
siftDown(0, x);//调整
return result;
}
上述代码首先记录0
下标处的元素,并用最后一个元素替换0
下标位置的元素,之后调用siftDown()
方法对堆进行调整,最后返回原来0
下标处的那个元素(也就是最小的那个元素)。重点是siftDown(int k, E x)
方法,该方法的作用是从k
指定的位置开始,将x
逐层向下与当前点的左右孩子中较小的那个交换,直到x
小于或等于左右孩子中的任何一个为止。
//siftDown()
private void siftDown(int k, E x) {
int half = size >>> 1;
while (k < half) {
//首先找到左右孩子中较小的那个,记录到c里,并用child记录其下标
int child = (k << 1) + 1;//leftNo = parentNo*2+1
Object c = queue[child];
int right = child + 1;
if (right < size &&
comparator.compare((E) c, (E) queue[right]) > 0)
c = queue[child = right];
if (comparator.compare(x, (E) c) <= 0)
break;
queue[k] = c;//然后用c取代原来的值
k = child;
}
queue[k] = x;
}
remove()
remove(Object o)
方法用于删除队列中跟o
相等的某一个元素(如果有多个相等,只删除一个),该方法不是Queue接口内的方法,而是Collection接口的方法。由于删除操作会改变队列结构,所以要进行调整;又由于删除元素的位置可能是任意的,所以调整过程比其它方法稍加繁琐。
具体来说,remove(Object o)
可以分为 2 种情况:
- 删除的是最后一个元素。直接删除即可,不需要调整。
- 删除的不是最后一个元素,从删除点开始以最后一个元素为参照调用一次
siftDown()
即可。此处不再赘述。
具体代码如下:
//remove(Object o)
public boolean remove(Object o) {
//通过遍历数组的方式找到第一个满足o.equals(queue[i])元素的下标
int i = indexOf(o);
if (i == -1)
return false;
int s = --size;
if (s == i) //情况1
queue[i] = null;
else {
E moved = (E) queue[s];
queue[s] = null;
siftDown(i, moved);//情况2
......
}
return true;
}
参考:Reference